博客
关于我
Springboot2模块系列:日志slf4j2(持久化)
阅读量:244 次
发布时间:2019-03-01

本文共 2146 字,大约阅读时间需要 7 分钟。

排除Spring Boot默认日志框架,使用SLF4J2进行日志持久化配置

1. 排除Spring Boot默认日志框架,引入SLF4J2

在Spring Boot项目中,默认使用spring-boot-starter-logging进行日志处理。为了使用更灵活的日志框架SLF4J2,我们需要在依赖管理中排除Spring Boot的日志相关组件。具体配置如下:

org.springframework.boot
spring-boot-starter
org.springframework.boot
spring-boot-starter-logging
org.springframework.boot
spring-boot-starter-web
org.springframework.boot
spring-boot-starter-logging
org.springframework.boot
spring-boot-starter-log4j2

2. SLF4J2日志配置文件

为了实现日志的持久化存储,我们需要配置SLF4J2日志框架。以下是一个典型的slf4j2.xml配置示例:

ddd
logs/${app_name}

3. 应用配置文件

application.yml中引入日志配置文件:

logging:    level:        root: info    config:        classpath: config/slf4j2.xml

4. 使用方法

使用SLF4J作为日志输出工具,例如:

import org.slf4j.Logger;import org.slf4j.LoggerFactory;public class LoggerSave {    static Logger logger = LoggerFactory.getLogger(LoggerSave.class);    public void main(String[] args) {        logger.error("error test");    }}

通过以上配置,您可以实现日志的持久化存储和管理,同时灵活控制日志级别和输出格式。

转载地址:http://hvht.baihongyu.com/

你可能感兴趣的文章
Objective-C实现Minimum Vertex Cover最小顶点覆盖算法(附完整源码)
查看>>
Objective-C实现MinimumCostPath最小成本路径算法(附完整源码)
查看>>
Objective-C实现min_heap最小堆算法(附完整源码)
查看>>
Objective-C实现mobius function莫比乌斯函数算法(附完整源码)
查看>>
Objective-C实现modular Binary Exponentiation模二进制指数算法 (附完整源码)
查看>>
Objective-C实现modular exponential模指数算法(附完整源码)
查看>>
Objective-C实现monte carlo dice蒙特卡洛骰子模拟算法(附完整源码)
查看>>
Objective-C实现monte carlo蒙特卡罗算法(附完整源码)
查看>>
Objective-C实现Mosaic Augmentation马赛克增强算法(附完整源码)
查看>>
Objective-C实现msd 基数排序算法(附完整源码)
查看>>
Objective-C实现MSRCR算法(附完整源码)
查看>>
Objective-C实现multi level feedback queue多级反馈队列算法(附完整源码)
查看>>
Objective-C实现multilayer perceptron classifier多层感知器分类器算法(附完整源码)
查看>>
Objective-C实现multiplesThreeAndFive三或五倍数的算法 (附完整源码)
查看>>
Objective-C实现n body simulationn体模拟算法(附完整源码)
查看>>
Objective-C实现naive string search字符串搜索算法(附完整源码)
查看>>
Objective-C实现natural sort自然排序算法(附完整源码)
查看>>
Objective-C实现nested brackets嵌套括号算法(附完整源码)
查看>>
Objective-C实现nevilles method多项式插值算法(附完整源码)
查看>>
Objective-C实现newton raphson牛顿-拉夫森算法(附完整源码)
查看>>